.FILE 2G 3G 4G 5G

Tidigare presentation på Goto 10 i Stockholm

Machine Learning Trends and Model Tracking

19 apr 2018, 18:00–21:30 | Arrangör: Foo Café

Eventet har redan varit så det går inte längre att anmäla sig. Kika gärna på våra andra event via menyn ovan.

Knock Data, the user group working with all things big data is back hosted by Foo Café. See you there in Goto 10

Machine Learning Introduction and Trends

This talk will share: 

- a general view of machine learning and data mining. 

- six top algorithms in machine leanring including association rules, clustering, classification and neural network

- the technical trends

Wen Zhou Ph. D has more than 11 years of experience asa. researcher and engineer in computer science. She has worked on large-scale research and application projects and led teams of researchers. She has developed applied alcorithms, methods, tools and software platforms within Machine Learning, Text Mining, Graphic Mining (Compex Networks) and Social Network Analysis. 

Deep Learning Models Tracking and Analytics

This talk will share:

- the importance of tracking models during machine learning and hyper parameter tuning

- a way to track models and share it 

- ways to do analytics on deep learning 

Rockie Yang ia a data enthusiast. He is passionate to build flexible and yet simple end to end big data pipeline which can flawlessly transform business requirements to realization. 

Agenda

18:00 Arrive

18:15 First Talk, Machine learning introduction and trends by Dr. Wen Zhou

18:50 Break with food and drinks

19:20 Second Talk, Deep learning Models Tracking and Analytics by Rockie Yang @ Think Big Analytics

20:00 More drinks and a chance to ask questions

Goto 10 är en arena där individer och organisationer kan dela kunskap, idéer och perspektiv. Detta event speglar arrangörens åsikter och delas inte nödvändigtvis av oss på Goto 10 och Internetstiftelsen. På Goto 10 får idéer och kunskap testas, diskuteras och utvecklas så länge de följer våra riktlinjer.

Fler event i Stockholm